お悩みを見ながら、ふと、数学を勉強する意味について思いついたこと。 数学を学ぶ…

回答3 + お礼1 HIT数 407 あ+ あ-


2021/03/25 13:53(更新日時)

お悩みを見ながら、ふと、数学を勉強する意味について思いついたこと。
数学を学ぶ最大の意義は、「問題をシンプルに考える練習」ではないだろうか?
例えば現実の、将来や家庭環境に関する悩みをなんとかしたいとき。たいていその問題には多くの条件、制約、主観、食い違いなどが含まれていて非常に複雑である。
一方、数学にはそれがない。自らを成り立たせる体系に照らして矛盾しているかどうか、条件はこの一点だけなのだ。
例えば△ABCと△AEDが相似であるかどうか考えるとき、△ABCの気持ちとか、年収とか趣味嗜好なんか(もちろん)考えなくても良い。相似という言葉の規定する条件にあっているか、それだけが問題である。

こういうシンプルな問題を通して、手早く問題解決の方法を学ぶのが、人間が等しく数学を学ぶべき理由ではないだろうか。



タグ

No.3259975 (悩み投稿日時)

新しい回答の受付は終了しました

投稿順
新着順
主のみ
共感順
付箋

No.1

個人的には「生活算数」と「数字の概念」を学ぶのに
中学の数学くらいまではあった方が良いのだろうと感じます。
「使う」ということと「分かっておく」という必要を満たすための勉強。
7歳くらいの子どもと数字の話をすると、
数字にまつわる初歩的な、そして答えにくい質問を受けたりします。
0/2っていくつなの?
地球の重さってどれくらいあるの?
そうしたことを自分なりに考え、人から教わったときに「なるほど」と思うためには
中学までの数学くらいは必要になると感じます。

高校に入ってから学ぶ数学は
「大学で勉強するときに必要になるかもしれない数学力(人によっては必要にならない数学力)」
を求められる印象です。


問いかけ(疑問)
式の構築(考え方)
答え
という思考の基本みたいな構造を数学はしてますが、
言語化するのとは一線を画してる印象です(数学できる人が理路整然と考えられて言葉にもできるかと言うと、そんなことはない)。

No.2

>> 1 確かに実用的な必要も多くあるだろう。
わたしの考えは数学の中でも
集合論や記号論理学の分野に偏っていたかもしれない。

No.3

共感です。

数学を学ぶ理由は論理的思考能力をもってもらうことです。

数学の勉強は大きく言ってふたつです。
定理の証明と定理を使っての問題解決です。
どちらも「AだからB」「BだからC」…と論理を追って
目標とする結論を導き出します。

これは実は法学と同じです。
法学の勉強も大きく言ってふたつです。
立法趣旨と法律を使っての紛争解決です。
だから私は法学は理系の学問と思っています。

「法の支配」を原理とする民主主義社会では
市民各位がこうした論理的思考能力をもつことがとても大事です。
だから公教育では数学が必修なのです。

しかし残念なことに数学を嫌う人は少なくありません。
「四則演算ができれば日常生活は困らない」という論調があり、
数学を学ぶ理由を試験に受かるための苦行と考える人も多いです。

何より数学教師自体が数学を学ぶ理由をわかっていません!

私は論理的思考能力とは外国語のようなものだと思っています。
論理的思考能力がない人に論理的な説明をしても
わかってもらえないからです。
彼らはすぐに「くどい!」「結論は何だ?」と不平を言います。
大事なのは結論ではなく前提となる事実と結論までの論理関係
なのですが…。

No.4

そうですよ。
論理的思考の訓練です。
因数分解や集合、論理式など基本全て思考の組み立ての訓練になります。
具体的な言葉による頭の中の思考を現代文、演繹法と帰納法による類推の仕方を理科社会(古文や漢文もこれに入る)で学ぶんです。

投稿順
新着順
主のみ
共感順
付箋

新しい回答の受付は終了しました

つぶやき掲示板の悩み一覧

悩みを投稿する

注目の話題

お悩み解決掲示板 板一覧